
XXIX. DIDMATTECH 2016, EÖTVÖS LORÁND UNIVERSITY, FACULTY OF INFORMATICS, BUDAPEST

THE THINKING TOOLKIT OF PROGRAMMING

SZLÁVI, Péter – ZSAKÓ, László – TÖRLEY, Gábor, HU

Abstract: When a program is being written, a number of cognitive operations are
performed in the programmer’s brain. It is important to recognize and consciously
use them not only when a program is being written, but they are absolutely vital for
developing students’ problem-solving thinking, which is the most important goal in
education. This paper focuses on two of the most significant cognitive operations –
linguistic abstraction and analogical thinking–; in addition, it also aims at discussing
their characteristics. To introduce them shortly, let us define these concepts in a
nutshell. The starting point of language abstraction: language acquisition requires a
great degree of abstraction, because the elements and structures of every language are
all abstractions. The essence of analogical thinking: when solving a specific task, you
always start off with programming tasks that have already been done and thus exist
in your mind.

Key words: programming didactics, cognitive processes, problem solving thinking,
algorithmic and language abstraction

1 Introduction

While programmers are working hard to solve a programming task, consciously or
unconsciously, they use a wide variety of thinking methods. [1] When starting off from the
task, they refine it several times to match them their own schemes existing in their brain
and based on their personal experience; and – continually, circularly and more precisely –
reformulate the task. It means that programming is a sequence of more and more refined
(pattern-based) models where you need to get to a stage where the vocabulary (i.e. the set
of instruction patterns) of the programming language chosen serves as a basis for the
model. (Fig. 1.)

Fig.1: The abstract model of programming

XXIX. DIDMATTECH 2016, EÖTVÖS LORÁND UNIVERSITY, FACULTY OF INFORMATICS, BUDAPEST

2 Linguistic abstraction

This thinking method is based on three principles: 1) Acquiring a language requires a great
degree of abstraction, since the elements (words) of each language and their structures
(larger units constructed in accordance with rules like affixed or inflected words and
phrases) are all abstractions. Without the knowledge of their syntactic and semantic
relationships it is hopeless to correctly use any languages. As we saw 2) programming is the
production of a model sequence (from the task to the code); and 3) a unique vocabulary
and specific descriptive rules belong to each model.

You should be aware that there are two levels of the syntax: the “concrete” or
“written” level (where the spelling and grammatical rules of the language apply), and the
abstract level, which is free from the accuracy of description and contains only the essential
features (at this level there can be “imperfect or wrong” words and “wrong” phrases; as
long as they are clearly decipherable, they are just as good as their perfect synonyms).

We will study three kinds of model languages: 1) wording the task (or specification), 2)
design (or algorithmization) and 3) encoding.

It is the formulation of the problem that requires the first abstraction. When wording
the problem, first you detach everything irrelevant from the point of view of the task. The
important message to be selected from the informally formulated text of the problem is as
follows: What are the starting-off data to be defined during the problem solving?; What
conditions can be taken into account from the initial data, and how do the resulting data
relate to the initial ones? Students’ task is similar to solving maths word problems: they
must be able to interpret them. The listed above provide guidelines for the interpretation.

Relying on the above mentioned, you can create the vocabulary and structure of the
specification language. You can design the abstract syntax with the help of “Pólya’s
principles”:

 What data are available?

 What sort of answer does the task require?

 What do you know about the basic data? Give a few examples!

 What are the relationships between the basic data?

 How do the basic data determine the result data? Give an example for the basic
data and the corresponding result data!

This is followed by abstracting the typical attributes of data from anything specific:
standardisation i.e. generalisation of the data into a value set, then assigning it to the data.
Here you choose one–or when you have complex data, more–suitable set(s) out of some
basic sets, and then–if necessary–you create the basic set of complex data using allowed set
operations.

We have decided to include this step among language abstraction steps, because a
programmer – even without using formal tools [2], in an intuitive way – must be aware of
the ”linguistic framework” which he is to use when considering data. This linguistic
framework as a minimum means the following: the concept of the set, the stock and
construction of sets that can be chosen to start with. In Chomsky’s sense this language can
be regarded as a language, since it can be described with a very simple grammar.

 “… I will consider a language to be a set (finite or infinite) of sentences, each finite in length and
constructed out of a finite set of elements. … the set of 'sentences' of some formalized system of mathematics
can be considered a language.” [3]

XXIX. DIDMATTECH 2016, EÖTVÖS LORÁND UNIVERSITY, FACULTY OF INFORMATICS, BUDAPEST

It is just a “misbelief” that you can write a program without specification! Every
programmer either unconsciously specifies, or carries out this activity together with the
next step (in the worst case together with encoding); and this is where problems may arise.
The knowledge of the “syntax” of this language is just as much required as the knowledge
of writing (i.e. the “formal” grammar) in a natural language (cf. specification illiteracy).

The next situation that expects a programmer to perform language abstraction is the
process of designing. Then the knowledge of the chosen descriptive tool requires language
abstraction skills. The design is done in a “standard” descriptive language. For example:

 block diagram

 structogram }languages using “drawings”

 pseudocode languages using “characters”

 …

It is worth mentioning that the above “drawing” algorithm-describing tools are just as
languages as the pseudo-code, but their linguistic basic components are graphical, and their
grammatical rules are a set of regulated relations of these components.

In data description as well as in algorithmization you must recognise typical and
sufficient structures, and it is sensible to develop a clear, but flexible enough language. But
what do these attributes mean?

 “Typical and sufficient” – the ability to work with it in a natural way, and to
foresee all probable problems with its help;

 “Flexible” – developers should not spend too much of their energy recalling
syntactic constraints that must be respected during the work;

 “Obvious” – as time goes by, the idea that has been put on paper must solidly
mean the same as it did when it was written.

Many languages meeting these criteria have been developed up to now. Taking into
account several criteria, we developed the Hungarian pseudo-coding formalism, which we
use to make our algorithms. [9]

It is worth recognizing that programmers apply linguistic abstraction at various levels
during the design. The lowest level is the so-called instruction level, where the words of
the language are the instructions of the algorithmic language, and the structures of the
language are defined by the algorithmic language itself. It is common to attach refinements
(procedures, functions etc.) to this level, as well. In this case, of course, the vocabulary of
the language is dynamically expanded with the names of refinements, and you should
include the definition of refinements and the syntax of their application, too. The extension
of the previous level is the level of programming theorems. Here belongs the syntax of
defining and applying theorems (which conveniently hardly differ from refinements). The
increase in level is caused by the higher level of the semantics of the theorems. Theorems
are included pre-defined into the language (i.e. they are just as bound as the instruction
components of an algorithmic language). The language’s becoming more complex is,
therefore, negligible, while that of the algorithmic, abstraction content is substantial. The
third linguistic level is that of modularization. It also extends the previous level by
introducing the concept of the module, giving both the definition and the application
syntaxes. In other words, you can say that this is the level of “tool-making”. The “speaker”
of this language must clearly recognize how a programmer can use the “tool” (i.e. a model
to be created) comfortably, efficiently, and safely. Or to put it in another way: this is the

XXIX. DIDMATTECH 2016, EÖTVÖS LORÁND UNIVERSITY, FACULTY OF INFORMATICS, BUDAPEST

level of producing a “tool-function-universe”, during which the module programmer relies
on the abstractions of current programmers.

A little diversion to the “drawing algorithmic language”:

Herewith, we will mention the graphic “tricks”, i.e. graphic language solutions that
programmers often use when working. We do not mean the numerous “drawing” tools
invented for writing algorithms, such as block diagrams, structograms or Jackson's
diagrams, but those figures and “scribbles on the margin” that programmers use to try and
catch the essence of an algorithm or map data into the memory. (If you are to face a rather
complex linked list, it is almost “indispensable” to make such drawings in order to follow
how algorithm parts work.) A graphic sketch – i.e. a “static visualisation” of the problem –
is often made in order to better understand simpler tasks, as well. The figure created shows
understanding, but it is the activity, the process of drawing that means the real depth of
understanding: the order in which the individual items of “artwork” are created is the
prefiguration of algorithmic thinking. Its basis is a mental phenomenon similar to the
implementation of an algorithm via choreographed dance in Kátai’s paper. [8]. What has
just been described is also true for programs animating algorithms, which are widespread in
education. [10,11] “Scribbles on the margin” have a substantial surplus compared to these,
namely, creating your own thoughts as opposed to recognising other's thoughts. For example, let us
consider the figure pair demonstrating insertion sort, its essence and steps. Just imagine the
figure animated correctly; and the algorithm is ready. You should only be formalise it in a
traditional algorithmic language!

Fig. 2: A “static visualisation” of insertion sort algorithm

The following ideas by György Pólya can easily be adapted to the problem of finding
the relevant figure:

“We start the detailed consideration of such a problem by drawing a figure containing the unknown
and the data, all these elements being assembled as it is prescribed by the condition of the problem. In order
to understand the problem distinctly, we have to consider each datum and each part of the condition
separately; then we reunite all parts and consider the condition as a whole, trying to see simultaneously the
various connections required by the problem. We would scarcely be able to handle and separate and
recombine all those details without a figure on paper.” [5]

To sum up the above: when designing, in addition to standard algorithm-describing
languages, programmers also apply a language that lacks a “regulated syntax” (i.e. they use
graphic “help”).

The third linguistic challenge is encoding itself. There is no need for serious
abstraction here. Of course, only if the programmer has realized that he/she can

XXIX. DIDMATTECH 2016, EÖTVÖS LORÁND UNIVERSITY, FACULTY OF INFORMATICS, BUDAPEST

mechanically do a substantial part of transplanting into the specific programming language
(i.e. encoding), when he/she has a mature algorithm. It is as much a linguistic abstraction
activity as the translation activity between related language pairs with a primitive syntax.

This requires that there are elaborate encoding rules available that establish a more or
less clear link between the linguistic elements of the algorithm and structures of the
programming language. The “more or less” indicates that a certain level of abstraction is
definitely involved in the process, although its degree depends on the programmer
experience and awareness.

3 Analogy

"There is nothing wrong with thinking according to analogies: analogy has the advantage that it does
not bring closure and does not seek a final position; by contrast, induction is disastrous when it has a

preconcieved purpose in mind and works toward it, carrying both truth and falsehood along its current"

[Goethe]

This is the thinking method applied most naturally – or you might say – instinctively. Its
essence is the following: when the programmer is trying to find a solution to a well-defined
(sub)task, first in his/her memory he/she will look for some kind of “related tasks” to start
with. Having found one, he/she will recall its “best” solution and then “probe” the
matching points between the task to be solved and the model in order that he/she can map
them to each other, and thus to apply the known solution. So the scheme of analogic
problem-solving is as follows:

 Finding a related task +

 Detecting matching points +

 Recalling the solution of a related task (= related solutions) +

 Updating related solutions.

Let us note that analogical thinking is (also) based on abstraction, e.g. recognizing the
parameters of a problem, telling the difference between relevant and irrelevant, or between
essential (abstract) and specific.

Regarding the above scheme, two questions arise. On the one hand, “What does related
task mean?” On the other hand, “In what way are the two solutions related?”

Tasks are related if the way of raising questions is the same regardless of the possibly
different attributes of data (e.g. data type). In related tasks data and their relationships play
the same role. What tasks a programmer encounter is quite incidental. Thus, the tasks and
solution bases can be different, depending on the person. Yet, common experience shows
that you can assemble a set of typical problems & questions which will help find one or
more analogues to at least 90% of all tasks. [7,9]:

 duplication with item transformation,

 Is there an element with the specific attributes?,

 Give an element with the specific attributes,

 How many elements with the specific attributes are there?,

 Which is the largest element? etc.

The question word can indicate whether you are “raising the same problem” (after
Pólya). However, pay attention because they can be misleading! For example: Which?

(selection) ≡ "What?" (selection) "Which?" (Maximum selection) They are not quite the
same, are they?!

XXIX. DIDMATTECH 2016, EÖTVÖS LORÁND UNIVERSITY, FACULTY OF INFORMATICS, BUDAPEST

Having solved a large number of problems, even a self-taught programmer will sooner
or later recognize model tasks. However, the detection process can be greatly speeded up if
you systematically call your students’ attention to these schemes, shortly after introducing
them some basic programming vocabulary and some practising. You can do this via
examining and analysing some carefully selected tasks, then drawing conclusions from and
generalising the experience [7,9], or in a direct, formal way [4]. The former method is
primarily used with secondary school students, while the second one is good for university
students who have appropriate formal mathematical knowledge.

It is worth quoting György Pólya here and what he stated about the "genetic principle"
[6]:

“According to the genetic principle, the learner should retrace the path followed by the original
discoverers. According to the principle of active learning, the learner should discover by himself as much as
possible. A combination of the two principles suggests that the learner should rediscover what he has to
learn.”

It means that we adjusted Pólya’s genetic principle to programming when – applying
programmer-explorers’ systematicness – we selected concrete programming tasks that will
make students discover the model task.

It is important to notice that the systematic introduction of analogous schemes is
absolutely vital because of the limited educational time frame allocated we already
mentioned in the Introduction. However, it is a major educational challenge to find the
appropriate ratio of “guided” and your own “aha! insight experience” based approach. You
have to find the ideal for the age group ratio between two extremes: between approaches
relying on entire self-discovery, and the one based on the refined, prepared schemes.

The guided or controlled approach has an advantage: it is less time-consuming,
whereas the “aha! insight experience” approach is known to guarantee deeper learning. The
former could be regarded as a lexical approach (and indeed it is if it is badly implemented),
while the latter is considered to better develop creativity. Thus time constraints and the
development of creativity are confronted antagonistically.

A related solution is a structurally identical algorithm. The necessary components are
elementary instructions and instructional construction tools introduced by structured
programming.

Instructional constructions : Elementary instructions:

a) instruction-sequence,

b) branch(es),

c) loop(s),

d) defining refinement

e) assignment (with a formula containing
a function call as a possible refine-
ment),

f) call of a refinement considered elemen-
tary.

D) and f)–and often e) as well–follow the well-known "top-down planning" principle
in the algorithmic language.

It is thought-provoking experience that novice programmers usually come to
recognize analogies by noticing similarity in the codes, which means that instead of the
substantial, semantic similarity, it is a formal, syntactic one that leads them to abstract
thoughts.

Conclusion

In this paper we have had a close look at two thinking toolkits: language abstraction and
analogy. When describing the first tool, we wrote about three model languages: formulating

XXIX. DIDMATTECH 2016, EÖTVÖS LORÁND UNIVERSITY, FACULTY OF INFORMATICS, BUDAPEST

the task (how to get from an informally worded task to a formal specification), the design
(where we determined the four main characteristics and the levels of an algorithmic
language) and encoding. When discussing the algorithmic language, we highlighted
graphical solutions, where programmers “visualize” the process of problem solving for a
deeper understanding, and thus reach algorithmic thinking.

The tools of analogy include model tasks (model algorithms) that at least 90% of the
problems to be solved can be linked to; thus one can say they are “relatives”. It means that
searching for related tasks (schemes or models), detecting the connection between the
specific task and the model, and then recalling the solution of the model algorithm will lead
the programmer to the solution of the specific task.

The thinking tools discussed are concepts that do not have precise boundaries, but
mutually expand into each other’s “spheres of interest”. Yet it is useful to distinguish them.
Outlining concepts allows us to study them independently, which enable us to map the
mechanism of thinking. An important consequence of this is that you will be able to
elaborate methods in order to develop how certain thinking tools can be used. They will
mainly bear interest in programmers’ performance, but in general they will have a positive
effect on problem-solving thinking, as well.

Bibliography

[1] SZLÁVI, P., A programkészítés didaktikai kérdései. ELTE, 2005. Available:
http://www.inf.elte.hu/karunkrol/szolgaltatasok/konyvtar/lists/doktori%20disszert
cik%20adatbzisa/attachments/32/szlavi_peter_tezisek_hu.pdf . [Accessed on: May
28, 2016].

[2] SZLÁVI, P., Programozási tételek specifikációja. 1996. Available:
https://www.researchgate.net/publication/303582337_Programozasi_tetelek_specifi
kacioja. [Accessed on: May. 28, 2016].

[3] CHOMSKY, N., Syntactic structures. Mouton Publishers, The Hague, Paris, 1957.

[4] FÓTHI, Á., Bevezetés a programozáshoz. Tankönyvkiadó, 1983.

[5] POLYA, G., How to Solve It: A system of thinking which can help you any problem. Princeton
University Press, 1945.

[6] POLYA, G., Mathematical Discovery on Understanding, Learning and Teaching Problem
Solving, Combined Edition. John Wiley & Sons, 1981.

[7] SZLÁVI, P., ZSAKÓ, L.: Módszeres programozás: programozási tételek. Mikrológia19,
ELTE TTK Informatikai Tanszékcsoport, 2004.

[8] KÁTAI, Z., TÓTH, L.: Technologically and artistically enhanced multi-sensory computer
programming education. In Teaching and Teacher Education. 26, 2010, 2, 244–251.

[9] SZLÁVI, P., ZSAKÓ, L., Módszeres programozás. Műszaki Könyvkiadó, 1986.

[10] TÖRLEY, G., Objektum orientált programozás tanítása vizualizációs eszközökkel. In
InfoDidact’2012 Konferencia, 2012. Available:
http://people.inf.elte.hu/szlavi/InfoDidact12/Manuscripts/TG.pdf. [Accessed on:
May 28, 2016].

[11] TÖRLEY, G., Algorithm visualization in teaching practice. In Acta Didactica Napocensia,
Vol. 7. No. 1., pp. 1-17., 2014., Babes-Bolyai University, Didactics of Exact Sciences
Department and the Pedagogy and Applied Didactics Department, Cluj-Napoca,
Romania ISSN 2065-1430

Lectured by: Sándor Király, Dr. Ph.D.

XXIX. DIDMATTECH 2016, EÖTVÖS LORÁND UNIVERSITY, FACULTY OF INFORMATICS, BUDAPEST

Contact address:

Péter Szlávi, Dr. Ph.D.,
Department of Media and Educational Informatics, Faculty of Informatics, Eötvös Loránd
University, H-1117 Budapest, Pázmány P. sétány 1/C, Hungary,
phone: +36-1-372-2500 , e-mail: szlavip@elte.hu

László Zsakó, Doc. dr. hab. Ph.D,
Department of Media and Educational Informatics, Faculty of Informatics, Eötvös Loránd
University, H-1117 Budapest, Pázmány P. sétány 1/C, Hungary,
phone: +36-1-372-2500 , e-mail: zsako@caesar.elte.hu

Gábor Törley, Dr. Ph.D.,
Department of Media and Educational Informatics, Faculty of Informatics, Eötvös Loránd
University, H-1117 Budapest, Pázmány P. sétány 1/C, Hungary,
phone: +36-1-372-2500 , e-mail: pezsgo@inf.elte.hu

