
XXIX. DIDMATTECH 2016, EÖTVÖS LORÁND UNIVERSITY, FACULTY OF INFORMATICS, BUDAPEST

VIEWPOINTS OF PROGRAMMING DIDACTICS AT A WEB GAME

IMPLEMENTATION

HORVÁTH, Győző – MENYHÁRT, László – ZSAKÓ, László, HU

Abstract: This article is written to those methodology specialist and practicing teachers
who are paying attention to programming and who would like to make their class
special. We present modern browsers’ HTML5 and JavaScript support with a simple
graphical game implementation. We make systematic programming enjoyable to our
students. After understanding the basics, we present some game framework imple-
mented in JavaScript, too, with which we can achieve spectacular results easier with-
out giving up programming.

Keywords: graphics, programming, game, web, HTML5, JavaScript, frameworks.

1 Introduction

Web platform is good for teaching programming as it is shown in a lot of examples [6,7,8].
We have already dealt the connection between programming and web environment, so we
have examined the possibility of using JavaScript as the first high level programming lan-
guage [9,10]. Now we are building together these areas and looking for the chance of get-
ting knowledge with simple but spectacular game implementation. After Scratch or Blockly
graphical algorithm representation, so when the „small school” is finished it is time to write
source codes. We introduce the new knowledges with mathematical problems in classical
programming teaching. But at the same time students’ maturity level does not gain this ab-
stract and unconcerned level forced to the fictional data processing, so they lose their inter-
esting very soon. Moreover there are very few students who are interested in maths, so we
should build to other task groups.

The students in the grammar school are enough prepared to do some own graphical
and image processing operation because they have already acquired the skills of elementary
coordinate geometry on their maths courses. This presented task helps these knowledges’
better deepening and maintains student’s interest of informatics with a spectacular pro-
gramming example.

First part of our article is moving towards the implementation of our idea from the
systematic programming. Second part presents the necessary information about the envi-
ronment and the JavaScript programming language. Finally we examine some game frame-
works perspective of usability.

2 Methodological considerations and algorithm patterns

Learning programming is traditionally based on problems of mathematics and number the-
ory, in which divisibility and prime numbers are in focus. This approach is suitable students
who are interested in mathematics, moreover likes and can solve mathematical problems.
But such students are very rare unfortunately. There are lots of attempts long ago to find
an alternative task group.

In some cases the authors change only the range of tasks to be solved, such approach
is the lecture notes written by Zsakó and Szlávi for biologist university students [1]. Here
the basic operations are still reading from the input, writing to the output and variable as-
signment, which are organized into more difficult programs by adding conditional and loop
statements.

XXIX. DIDMATTECH 2016, EÖTVÖS LORÁND UNIVERSITY, FACULTY OF INFORMATICS, BUDAPEST

Seymour Papert followed a different way [2], when he changed the scope of basic op-
erations into commands of turtle graphics and text manipulation. Teaching the turtle
graphics, loops precede conditionals, while in the case of text manipulations recursion ap-
pears instead of loops.

The theoretical basis of this article follows the latter approach, namely, let us change
the scope of basic operations! Drawing a point to the screen will be our basic activity be-
side the variable assignment [3,4].

The basic idea is to move a point in a screen with fixed width and height. Initially the
point is situated on the (c,r) coordinate. In order to understand the algorithms more easily,
the dimensions of the screen will be 1024 columns and 768 rows.

As a first task move the point to the right with 100 units. This can be achieved with a
count loop as an organizing tool!

Forward(N):

 r:=200; c:=200

 Repeat N times

 Point(c,r); c:=c+1

 End repeat

End procedure.

Second, move the point to the right border of the screen; the conditional loop is
shown up as an organizing tool!

ToTheBorder(r,c):

 While c<1024

 Point(c,r); c:=c+1

 End while

End procedure.

It can be seen that with both movement we drew a line. But we have the opportunity
to draw the point with an exclusive or operation by its colour. The nature of the exclusive
or is that applying twice the original value is recovered, i.e. A XOR B XOR B=A. With this our
original drawing becomes an animation.

The following procedure animates a point on the screen (applying a short waiting):

ToTheBorder(r,c):

 While c<1024

 Point(c,r); c:=c+1; Point(c,r); Wait

 End while

End procedure.

Next, give an arbitrary direction (dc, dr) to the point, and move it to the border of the
screen. This is the selection algorithm, as we return the coordinate where the point stops
moving.

ToTheBorder(r,c,dr,dc):

 While c>0 and c<1024 and r>0 and r<768

 Point(c,r); c:=c+dc; r:=r+dr; Point(c,r); Wait

 End while

End procedure.

Assume that there are lines drawn on the screen (walls). Stop the motion if the point
reaches a wall. This is the linear search programming theorem detecting the colour of the
points of the screen.

ToTheBorderOrWall(r,c,dr,dc):

 While c>0 and c<1024 and r>0 and r<768 and Co-

lor(c,r)≠background

XXIX. DIDMATTECH 2016, EÖTVÖS LORÁND UNIVERSITY, FACULTY OF INFORMATICS, BUDAPEST

 Point(c,r); c:=c+dc; r:=r+dr; Point(c,r); Wait

 End while

End procedure.

Make the point bounce back from the edge of the screen (for infinite times)! We need
to introduce the conditional statement to achieve this goal.

BouncingBack(r,c,dr,dc):

 Loop

 Point(c,r); c:=c+dc; r:=r+dr; Point(c,r); Wait

 If c>1023 then c:=1023-(c-1023); dc:=-dc

 If c<0 then c:=-c; dc:=-dc

 If r>767 then r:=767-(r-767); dr:=-dr

 If r<0 then r:=-r; dr:=-dr

 End loop

End procedure.

Let the point bounce back from the edge of screen, but if it collides to an inner wall,
then stop its motion.

BouncingBackUntilWall(r,c,dr,dc):

 While Color(c,r)≠background

 Point(c,r); c:=c+dc; r:=r+dr; Point(c,r); Wait

 If c>1023 then c:=1023-(c-1023); dc:=-dc

 If c<0 then c:=-c; dc:=-dc

 If r>767 then r:=767-(r-767); dr:=-dr

 If r<0 then r:=-r; dr:=-dr

 End while

End procedure.

Let the point bounce back from the edge of the screen regularly, and gradually slow
down. Slowing down can be achieved by multiplying the distance travelled per time unit
(i.e. velocity) by a f factor in every step. If f<1, then it is deceleration, if f>1, then it is ac-
celeration.

BouncingBackWithDeceleration(r,c,dr,dc,f):

 Loop

 Point(c,r); c:=c+dc; r:=r+dr; Point(c,r); Wait

 If c>1023 then c:=1023-(c-1023); dc:=-dc

 If c<0 then c:=-c; dc:=-dc

 If r>767 then r:=767-(r-767); dr:=-dr

 If r<0 then r:=-r; dr:=-dr

 dr:=f*dr; dc:=f*dc

 End loop

End procedure.

Let the point regularly bounce back from the edge of the screen, downwards acceler-
ate, upwards decelerate. With this the physical knowledge can be presented in the program.
According to the special coordinate system on the screen, downwards means the increasing
screen row index.

BouncingInGravity(r,c,dr,dc):

 Loop

 Point(c,r); c:=c+dc; r:=r+dr; Point(c,r); Wait

 If c>1023 then c:=1023-(c-1023); dc:=-dc

 If c<0 then c:=-c; dc:=-dc

 If r>767 then r:=767-(r-767); dr:=-dr

 If r<0 then r:=-r; dr:=-dr

 If dr≥0 then dr:=dr+1 else dr:=dr-1

XXIX. DIDMATTECH 2016, EÖTVÖS LORÁND UNIVERSITY, FACULTY OF INFORMATICS, BUDAPEST

 End loop

End procedure.

We get sufficient tasks for evolving the algorithmic structures. These spectacular tasks
may be developed into games. We can find the place in them for other programming theo-
rems: counting (counting the number of bounce backs or traversion through walls), filter-
ing (colouring the walls already reached).

These algorithms can be implemented with simple, traditional programming languages,
but they are not so amusing and spectacular compared to modern tools and intelligent in-
terfaces. In the following these algorithms will help us developing the notorious brick game
with HTML5 and JavaScript as a browser-based application.

3 Presentation of basics and environment

Students knows browsers, at least using them. We would like to use this platform-
independent environment to create graphical and spectacular applications with writing
source codes but without installing compilers and runtime environments. Native usage of
graphical elements on the websites is possible with appearing of HTML5 and canvas ele-
ment. It is supported by all current modern browsers.

The canvas gives an opportunity to manage two dimensional („2d”) and three dimen-
sional („webgl”) contexts. Now we use 2d, namely we create, modify and use a picture. The
next sample source code draws a yellow filled circle into a black background picture (rec-
tangle). A canvas tag is required in the body and there is a JavaScript function (main), what
will run after the page load. Here getting 2d context of canvas and calling drawing function
(draw) is located. The concrete rectangle drawing function is fillRect, but draw a circle
and fill it must be coded in two different commands (arc, fill). More detailed descriptions
can be found on a lot of websites like [11], so we did not specify these here.

<!DOCTYPE html><title>Example</title>

<canvas id="canvas" width="1024" height="768"></canvas>

<script type="text/javascript">

 var canvas = document.getElementById('canvas');

 var ctx = canvas.getContext('2d');

 function draw() {

 //Clear

 ctx.fillStyle = 'black';

 ctx.fillRect(0, 0, canvas.width, canvas.height);

 //Ball

 ctx.fillStyle = 'yellow';

 ctx.beginPath();

 ctx.arc(512, 384, 50, 0, Math.PI*2, true);

 ctx.closePath();

 ctx.fill();

 }

 draw();

</script>

In case of visualising movements, we have to redraw the picture sometimes. Redraw-
ing the object is not enough as it mentioned in the previous section, because the earlier
shape stays there as well. Function XOR is effective for simple, two colours figures, but we
use the simplest and general erasing the whole picture method in the next example.

This drawing is enough resource intensive so we do not use the simple function
setInterval to show the figure. We do not use the function setTimeout with which the
time of the next draw should be defined, but we apply the function requestAnimation-

XXIX. DIDMATTECH 2016, EÖTVÖS LORÁND UNIVERSITY, FACULTY OF INFORMATICS, BUDAPEST

Frame what uses better performance of browsers [12]. It is similar to setTimeout, but with
this the function gameloop is run by the browser at refresh rate. Because of this the time
intervals can be different at each drawing so we have to calculate the time difference be-
tween the two drawing and calculate the position of the objects in function update and
draw it to the new position in function draw.

We have to correct the algorithms above during the coding because of restriction of
technology namely they took advantage of having same interval. Function main must be
modified as it has an object (body) for the ball and a variable (prevT) to save the timestamp
so we will be able to calculate the elapsed time. Function update calculates the new posi-
tion of the ball by time. In function draw we use the actual position values of the body to
draw it.

var body = {

 x: 512, y: 384, r: 50, // px

 vx: 100, vy: 60 // px/s

};

var prevT = Date.now();

function gameloop() {

 var t = Date.now();

 var dt = t - prevT;

 prevT = t;

 window.requestAnimationFrame(gameloop);

 update(dt);

 draw();

}

function update(dt) {

 body.x += body.vx * dt/1000;

 body.y += body.vy * dt/1000;

 var frame = {

 bfx: body.r, jax: canvas.width - body.r,

 bfy: body.r, jay: canvas.height - body.r

 }

 if (body.x > frame.jax) {

 body.x = frame.jax - (body.x - frame.jax);

 body.vx = -body.vx;

 }

 if (body.x < frame.bfx) {

 body.x = frame.bfx + (frame.bfx - body.x);

 body.vx = -body.vx;

 }

 if (body.y > frame.jay) {

 body.y = frame.jay-(body.y- frame.jay);

 body.vy = -body.vy;

 }

 if (body.y < frame.bfy) {

 body.y = frame.bfy + (frame.bfy - body.y);

 body.vy = -body.vy;

 }

 body.vy += 1;

}

function draw() {

 //Clear

 ctx.fillStyle = 'black';

XXIX. DIDMATTECH 2016, EÖTVÖS LORÁND UNIVERSITY, FACULTY OF INFORMATICS, BUDAPEST

 ctx.fillRect(0, 0, canvas.width, canvas.height);

 //Ball

 ctx.fillStyle = 'yellow';

 ctx.beginPath();

 ctx.arc(body.x, body.y, body.r, 0, Math.PI*2, true);

 ctx.closePath();

 ctx.fill();

}

gameloop();

From now the implementation of first version of notorious brick game is very easy be-
cause the previous elements must be used only. There will be a list of objects bricks be-
sides the object ball (body). We have to modify the function update to rebound the ball at
the bricks not only at the edges. But they have to be deleted from the list at this time.
Function draw must show all objects from this list.

In the next step an object bumper is declared with its size and position. The ball must
be reflected from this, too, but it is not deleted and we should move it horizontal with the
mouse or keyboard. Here we meet with a newer programming technology concept, the
event control. The browser listens to every key press, we add it with function addEvent-
Listener, and it triggers a function moving. So we will be able to modify the position of
object bumper with this. We have to add the following extension to the JavaScript code on-
ly:

var bumper = {

 x: 512, y: 758, w: 100, h: 20, // px

 moving: 25 // px

}

function moving(event) {

 if (event.keyCode==37) {

 //moving left

 if (bumper.x-bumper.moving-(bumper.w/2)>0) {

 bumper.x=bumper.x-bumper.moving;

 } else {

 bumper.x=bumper.w/2;

 }

 } else if (event.keyCode==39) {

 //moving right

 if (bumper.x+bumper.moving+(bumper.w/2)<canvas.width){

 bumper.x=bumper.x+bumper.moving;

 } else {

 bumper.x=canvas.width-(bumper.w/2);

 }

 }

}

document.addEventListener("keydown",moving,true);

After these modifications reflections must be handled in function update and our own
brand game is completed.

4 Using game engines

In the previous chapter we could see that, beside the update function containing the core
logic, numerous other code fragments needed to display and run our application in the
browser. Although these code fragments are necessary parts of the whole code base, still
these program codes are simpler, more schematic, requiring less thinking and creativity,

XXIX. DIDMATTECH 2016, EÖTVÖS LORÁND UNIVERSITY, FACULTY OF INFORMATICS, BUDAPEST

compared to the data description and the core logic parts of the program. During educa-
tion it is worth drawing the students’ attention to these repetitive and schematic code
fragments, and make them reusable by rearranging them as parametric functions. With this
rearrangement we can take one step forward on the abstraction scale, because we could
pull out such parts of the whole monolithic code base, which are functionally unified sub-
programs. In our application the gameloop function, the drawings of the different objects,
counting the elapsed time between two cycles, updating the different aspects of the state-
space (moving the ball, handling collisions) are some possible examples where such ab-
straction could be made.

While the above abstraction is related to the decomposition of an imperative program,
handling the entities of the game leads us to another important programming paradigm.
Although it was necessary to store and update the position of the ball in the naïve solution,
the program did not take care of the functional integrity of these code parts. The next pos-
sible step in the abstraction scale is the identification of the different entities in the applica-
tion, and ensuring the encapsulation of the cohesive data and procedures. In this way data
representation and the object-oriented paradigm can be introduced in a very intuitive way
during analysing the task. In our example we can identify the objects of the imagined game
field and can think about their data members and methods.

The next step might be the embedding of these repetitive and reusable code fragments
into a uniform environment which provides the frames of the software development. In
this abstraction layer predefined conceptions and utility functions help developing the solu-
tion. These software environments are called software frameworks. Frameworks have two
fundamental basic purposes: on the one hand they have a very definite conception about the
process of the development, the right places of specific code fragments, and the main phi-
losophy of the program operation; on the other hand they provide best practices and ready-
made solutions for recurrent problems.

In the field of web-based game development almost every game framework provides
solutions for the game loop, for the calculation of the elapsed time between two cycles, for
the way and technology of rendering, for defining the game objects and observing their in-
teractions, for resource management (e.g. image, sound effects, animations), and other
characteristics which change from frameworks to frameworks. Every framework has its
own specific conception about code management as well: some absolute modular, others
more monolithical, there are more declarative or more imperative approaches among them.

The actual implementation depends obviously on the selected framework. In this arti-
cle the Frozen game framework [5] is used for demonstration, not because of its wide repu-
tation, but it recognizably shows the naïve starting point and the different abstraction layers
mentioned above are also easily can be applied. Game preparation, configuration and the
game loop takes place in the GameCore object, which can be started with the run method af-
ter instantiation and parameterization:

var game = new GameCore({

 canvasId: 'canvas',

 gameAreaId: 'gameArea',

 canvasPercentage: 0.95,

 update: update,

 draw: draw

});

game.run();

XXIX. DIDMATTECH 2016, EÖTVÖS LORÁND UNIVERSITY, FACULTY OF INFORMATICS, BUDAPEST

The logic of the bouncing ball is located in a separate module, where the data describ-
ing the ball and the related operations (e.g. the update method) are encapsulated. Also this
module is responsible for rendering the ball to the canvas (draw method):

function Ball() {

 this.x = 50; this.y = 20; this.r = 5;

 this.vx = 100; this.vy = 60;

 this.update = function (millis) {

 //Similar to the previous update method

 };

 this.draw = function (ctx) {

 //Similar to the previous drawing

 };

}

With this solution the update and draw phase of the game loop simply consists of the
calling of the update and draw methods of the ball object.

The motion and interaction of objects usually follows real-world mechanisms. In the
case of such games the implementation of these physical laws can be carried out by another
abstract layer: the physics engine. These physics engines also work with objects with posi-
tion and velocity, but beside these they have other real-world properties, such as mass,
momentum and angular momentum, shape and material. These objects can interact and
collide with each other while moving in a gravitational field. Physics frameworks often
simplify the creation and movement of objects by parameterization: instead defining object
behaviours the parameterization and population of the virtual world is in focus.

From the numerous physics engine (p2 [13], box2d [14]) the Frozen framework en-

sures deeper integration with the box2d physics engine through the BoxGame class. The

box2d objects added to the instance of this class are automatically handled, moved and
drawn by the Frozen framework. The following code example shows how the GameCore
class expands with the box data member (representing the box2d features), and how a new
ball can be added to the virtual world by the addNewBall method:

var game = new BoxGame({

 //Earlier parameters

 //...

 box: new Box({gravityY: 0}),

 addNewBall: function () {

 var ball = new Ball();

 game.addBody(ball);

 game.box.applyImpulseDegrees(ball.id,155,

 ball.impulse*0.75);

 }

});

game.addNewBall();

game.run();

For the full example only the operational objects must be added to the physical world:
the four walls and the bouncing ball. The ball class extends the Circle class of the box2d li-
brary, inheriting the properties of circle-shaped physical objects. (Inheritance is provided
through the dcl library.) Movement and drawing is guaranteed by the framework, drawing
can be customized if necessary. The perfectly elastic bouncing ball is simulated with the fol-
lowing parameters:

var Ball = dcl(Circle, {

 ball: true,

XXIX. DIDMATTECH 2016, EÖTVÖS LORÁND UNIVERSITY, FACULTY OF INFORMATICS, BUDAPEST

 x: 60, y: 210, radius: 10,

 restitution: 1.0, friction: 0, impulse: 5,

 constructor: function(){

 this.id = this.id || _.uniqueId();

 }

});

Examining the final solution, we can observe that at this level of abstraction the pro-
gramming theorems are diminished. This can be strange, as our original purpose was the
practice of these theorems through interesting programming tasks such as games. But
those theorems are hidden behind abstract programming interfaces and libraries. Neverthe-
less, these programming theorems can also be introduced, with the objects of this higher-
level abstraction. Programming theorems are defined on series. At this level of abstraction
of games we have series of physical objects, entities, sprites, and so on. For the game logic
not only their movements, but other examinations also take place, which necessarily in-
volves the usage of programming theorems.

5 Conclusion

The environments and technologies presented in this article give possibilities to make spec-
tacular and playful applications which can motivate students to learn programming. The
way shown in this article leads the reader from the algorithmical thinking through the tech-
nological knowledge to the higher levels of abstraction and tools, and hopefully invites oth-
er teachers to give a try for this method with their students.

We definitely think that there are many ways to endear programming with students,
and none of them can be exclusive. However, we are sure that the method of developing
web-based games can be successful for a significant group: many students report that mak-
ing a game is much more interesting than playing games.

During the planning of this article it was a definite aspect to make the systematic pro-
gramming and programming theorems as the base, and to motivate students with the
words of web environment and game development. During the implementation new tech-
nologies are introduced, and finally new abstraction layers can be carried in through the dif-
ferent frameworks.

Summing up, the example task in this article is capable to give a full answer to the cri-
teria of didactics, such as purpose, content, process, organization, method and tools.

6 References

1. P. SZLÁVI, L. ZSAKÓ: Bevezetés a számítástechnikába. Egyetemi jegyzet. Tankönyvkiadó.
(1987)

2. S. PAPERT: Mindstorms: Children, Computers, and Powerful Ideas, Basic Books, Inc. New
York, NY, USA (1980)

3. L. ZSAKÓ, P. SZLÁVI: Grafikai alapalgoritmusok. INF.O.’94 Informatika és számítás-
technika tanárok konferenciája. Békéscsaba, Magyarország, 1994.11.17-1994.11.19.
(1994)

4. L. ZSAKÓ, P. SZLÁVI: Az informatika oktatása. Budapest, ELTE Informatikai Kar.
(2014)

5. http://frozenjs.com/docs/ (last visited: 2015.10.31.)

6. https://code.org/learn (last visited: 2015.10.31.)

7. https://blockly-games.appspot.com/ (last visited: 2015.10.31.)

http://frozenjs.com/docs/
https://code.org/learn
https://blockly-games.appspot.com/

XXIX. DIDMATTECH 2016, EÖTVÖS LORÁND UNIVERSITY, FACULTY OF INFORMATICS, BUDAPEST

8. https://www.khanacademy.org/computing/computer-programming (last visited:
2015.10.31.)

9. GY. HORVÁTH, L. G. MENYHÁRT: Teaching introductory programming with Javascript in
higher education (Volume 1. pp. 339-350) DOI: 10.14794/ ICAI.9.2014.1.339 (2014)

10. GY. HORVÁTH, L. G. MENYHÁRT: Oktatási környezetek vizsgálata a programozás
tanításához. Infodidact 2014, Zamárdi, 2014.11.23-24.
http://infoera.hu/infoera2014/ea/infodidact2014_horvathgy_menyhartl.pdf (2014)

11. https://developer.mozilla.org/en-us/docs/web/api/canvas_api (last visited:
2015.10.31.)

12. https://developer.mozilla.org/en-us/docs/web/api/window/requestanimationframe
(last visited: 2015.10.31.)

13. https://schteppe.github.io/p2.js/ (last visited: 2015.10.31.)

14. http://box2d-js.sourceforge.net/ (last visited: 2015.10.31.)

Lectured by: Gábor Törley, PhD.

Contact address:

Győző Horváth, Dr. Ph.D.,
Department of Media and Educational Informatics, Faculty of Informatics, Eötvös Loránd Univer-
sity, H-1117 Budapest, Pázmány P. sétány 1/C, Hungary,
phone: +36-1-372-2500 , e-mail: gyozke@elte.hu

László Menyhárt,
Department of Media and Educational Informatics, Faculty of Informatics, Eötvös Loránd Univer-
sity, H-1117 Budapest, Pázmány P. sétány 1/C, Hungary,
phone: +36-1-372-2500 , e-mail: menyhart@inf.elte.hu

László Zsakó, Dr. hab. Ph.D,
Department of Media and Educational Informatics, Faculty of Informatics, Eötvös Loránd Univer-
sity, H-1117 Budapest, Pázmány P. sétány 1/C, Hungary,
phone: +36-1-372-2500 , e-mail: zsako@caesar.elte.hu

https://www.khanacademy.org/computing/computer-programming
http://infoera.hu/infoera2014/ea/infodidact2014_HorvathGy_MenyhartL.pdf
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API
https://developer.mozilla.org/en-US/docs/Web/API/window/requestAnimationFrame
https://schteppe.github.io/p2.js/
http://box2d-js.sourceforge.net/

